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Abstract. We use the Tour Du Wino Method, an algorithm based on Monte-

Carlo simulation, to approximate a solution to Laplace’s Equation on a rect-
angular domain with Dirichlet boundary conditions

1. Introduction

We seek to solve Laplace’s Equation

(1)
∂2u

∂x2
+

∂2u

∂y2
= 0

on a rectangular domain 0 ≤ x ≤ 7, 0 ≤ y ≤ 9 with boundary conditions
u(0, y) = u(7, y) = u(x, 0) = 0 and u(x, 9) = 12

2. Background

In electrostatics the following relationship is known where E represents an elec-
tric field, V the electric potential, ρ the charge density and ϵ the permittivity of
the material.

E = −∇V

it is also notable that the electric field has the following properties physically

∇E =
ρ

ϵ

if we do the following to our original equation we see an interesting result

∇E = −∇∇V

which means

∇2V = −ρ

ϵ

If the charge density is zero or in other words if we are in a charge free region
or space we arrive at the problem we are interested in Laplace’s Equation

∇2V = 0
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3. Implementation

We programmed a Monte-Carlo simulation using the Tour Du Wino method that
utilizes a 2D random walker on a uniform Cartesian grid that records the boundary
point on which it lands. It then repeats this process m times starting at this same
point. It then averages the value of the boundary condition at each point recorded
and assigns this to the value of the solution at the given point.[1]

The proof of this is very straightforward. The expected value for some point a
where R(a) is the value it will take is

E[R(a)] = 1
4 (E[R(b)] + E[R(c)] + E[R(d)] + E[R(e)])

where b,c,d, and e are the neighboring points.
This can be rewritten as

(2) uij =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

which can be rearranged as

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij = 0

The centered finite difference approximations for the second partial derivatives
are

uxx =
ui+1,j + ui−1,j − 2ui,j

h2
uyy =

ui,j+1 + ui,j−1 − uij

h2

It is now clear the above formulation can be expressed as h2uxx+h2uyy = 0 and
dividing away h2 leaves us uxx + uyy = 0 which is then Laplace’s Eq.

Our initial algorithm was

Algorithm 1 Original Tour Du Wino

1: Initialize pos1 and pos2 as the first interior coordinate pair
2: Generate random number r =∼ U(0, 1)
3: if r ≤ 0.25 then
4: pos1← pos1 + 1
5: else if r ≤ 0.5 then
6: pos1← pos1− 1
7: else if r ≤ 0.75 then
8: pos2← pos2 + 1
9: else

10: pos2← pos2− 1
11: end if
12: if pos1 or pos2 == 1 or n then
13: Save and continue to next starting point
14: else
15: Repeat
16: end if
17: Repeat for all starting points

This was incredibly slow so we parallelized the algorithm and have Algorithm 2
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Algorithm 2 Improved Tour Du Wino

1: Initalize pos1 and pos2 as all the coordinate pairs in 2 : n−1, repeated m times
2: Create 2 1× n2m arrays, r, to store coordinates for each walker
3: Generate 1× n2m array ∼ U(0, 1)
4: if ri ≤ 0.25 then
5: pos1i ← pos1i + 1
6: else if ri ≤ 0.5 then
7: pos1i ← pos1i − 1
8: else if ri ≤ 0.75 then
9: pos2i ← pos2i + 1

10: else
11: pos2i ← pos2i − 1
12: end if
13: if pos1i or pos2i == (1 or n) then
14: Remove pos1i and pos2i from list
15: Decrease length of random number array
16: end if
17: Repeat until the array is empty

This algorithm has improved efficiency as it can take advantage of parallel com-
puting while immediately deleting all ”completed” walkers from the arrays so that
it doesn’t waste time.

Our Matlab code is submitted as a separate document to avoid cluttering the
report.

4. Analytical Solution

If possible, before using a numerical solution to your problem it is best to have
an idea of what your solution is supposed to look like. To reiterate the problem

∂2u

∂x2
+

∂2u

∂y2
= 0

on a rectangular domain 0 ≤ x ≤ 7, 0 ≤ y ≤ 9 with boundary conditions
u(0, y) = u(7, y) = u(x, 0) = 0 and u(x, 9) = 12

To solve this analytically, we used separation of variables by hand. When the
boundary conditions were applied, the following analytical solution was found

(3) u(x, y) =

∞∑
n=1

48

nπ sinh(9
√
λ)

sin(x
√
λ) sinh(y

√
λ)

Where λ = n2π2

72

4.1. Analytical Solution Plot. Here the analytical solution is displayed from
several angles
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Figure 1. Analytical Solution

4.2. Analytical Solution Equipotential Lines. Here we several plots with a
different amount of equipotential lines with spatial y as the horizontal axis and
spatial x as the vertical axis, which gives an idea of the behavior of the electric
potential when it is constant.
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Figure 2. 5 Equipotential Lines

Figure 3. 15 Equipotential Lines

Figure 4. 20 Equipotential Lines

5. Computational Results

5.1. Convergence Towards Analytical Solution. For a small grid size n, the
solution has significant error regardless of number of trials, m.
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Figure 5. Solution with m = 100, m = 1000, and m = 10000

Clearly, a larger grid size is necessary to see results. By setting n = m = 350,
we obtain Figure 6 above which looks very similar to 1.

Figure 6. Numerical solution with a grid size of 350x350 and 350 realizations
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Figure 7. Equipotential lines of the numerical solution with 5,
15, and 20 contour lines

We can see in Figure 8 that the error decreases at a superlinear rate as the grid
size is increased.

Figure 8. Error Convergence as n increases with m = 100 and
m = 1000

As the grid size increases, the error decreases. Despite the large number of
trials having a slower convergence, they both still converge towards the analytical
solution.

5.2. Computation Time. We tested various different grid sizes and number of
trials as seen above. We have found the computation time to be O(n4m2) where n
is the size of the grid and m is the number of trials.
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For n = 8 and m = 10, 000, the computation time was 0.47 seconds. For the
final solution plot above, we used n = m = 350 and found the computation time to
be 553 minutes or approximately 9.2 hours.

6. Discussion

We have found that the Tour Du Wino is effective in solving Laplace’s Equation
on a rectangular domain with Dirichlet boundary conditions which allows for a
simulation of electric potential from a line charge diffusing through a rectangular
domain. An important topic to cover is what occurs at the corners of our solution.
Near the corner where the 12 V and 0 V boundary conditions meet, the analytic
solution behaves reasonably and smoothly increases from 0 to 12 as y increases. The
numerical solution instantly jumps to 12 along the boundary while immediately next
to the boundary it rises similarly to the analytic solution.

As far as contribution to the project, Matt Cassini wrote the code to implement
the Tour Du Wino algorithm and the error convergence, Moises Ramos derived
and plotted the analytical solution and made the random walker animation, and
Marissah McNeil wrote the code for the equipotential lines.
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