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Introduction

The optimal transport problem is to find
a measure-preserving mapping T (x) that
takes a two-dimensional source Y ⊂ R2

to a one-dimensional target X ⊂ R. This
map should minimise the total transport
cost given by a cost function c : X ×Y → R
over density functions f : X → R and g : Y → R.

Higher-dimensional versions of
this problem can be found in ap-
plications including

• Economics

• Semi-geostrophic flows

• Generalized Adversarial
Networks

The solution can be obtained by solving the non-local Monge-Ampère
equation:
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Approach
Design 1st discretisation of this ODE by:

• Utilising monotone finite differences

• Introduce a level set representation of transport curve
Y1(x,∇u(x))

• Use discrete version of Dirac Delta distribution

• Derive compatible boundary conditions

Discretisation
• Represent Y1 as zero level set of

ϕ(y) = u′(x) +
∂c
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• Do a Finite Difference discretisation of
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• Use consistent discretisation of multi-dimensional δ-
distribution

Boundary Conditions
We enforce a Neumann boundary condition on the left derived from
the problem structure:

u′(0) = min

{
− ∂c

∂x
(0, y) | y ∈ Y

}
and a Dirichlet condition on the right

u(1) = 0

so that solutions are unique up to adding a constant.

Computational Results
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